

Check for updates

Associations of Commonly Used Concomitant Medications With Survival and Adverse Event Outcomes in Breast Cancer

Natansh D. Modi 1,2 | Ahmad Y. Abuhelwa 3 | Nicole M. Kuderer 4 | Lee X. Li 1 | Gary H. Lyman 5 | Bogda Koczwara 1 $^{\boxed{0}}$ | Ganessan Kichenadasse 1,6 | Luke A. Selth 1,7 | Ceara Rickard 8 | Mark Haseloff 8 | Agnes Vitry 2 | Richard Woodman 1 | Jessica M. Logan 2 | Huah Shin Ng 1 $^{\boxed{0}}$ | Michael D. Wiese 2 | Ross A. McKinnon 1 | Andrew Rowland 1 | Michael J. Sorich 1 | Ashley M. Hopkins 1

¹Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, Australia | ²Clinical and Health Sciences, University of South Australia, Adelaide, Australia | ³Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE | ⁴Advanced Cancer Research Group, Kirkland, Washington, USA | ⁵Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA | ⁶Flinders Centre for Innovation in Cancer, Department of Medical Oncology, Flinders Medical Centre, Flinders University, Adelaide, Australia | ⁷Faculty of Health and Medical Sciences, The University of Adelaide, Australia | ⁸Consumer Advisory Group, Clinical Cancer Epidemiology Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia

Correspondence: Ashley M. Hopkins (ashley.hopkins@flinders.edu.au)

Received: 12 April 2025 | Revised: 31 July 2025 | Accepted: 13 October 2025

Funding: N.D.M. is supported by research grants from The Hospital Research Foundation (2023-S-DTFA-005) and Tour De Cure (RSP-117-FY2023).

A.M.H. is supported by an Emerging Leader Investigator Grant from the National Health and Medical Research Council, Australia (APP2008119). A.Y.A. is supported by funding from Targeted Research Grant (Project No. 2301110392) at the University of Sharjah, UAE. H.S.N. is supported by an Early Career Research Fellowship from the Cancer Council South Australia. M.J.S. and L.A.S. are supported by Principal Cancer Research Fellowships (PRF2719 and PRF2919) awarded by Cancer Council's Beat Cancer project on behalf of its donors, the state Government through the Department of Health and the Australian Government through the Medical Research Future Fund. The research programs of L.A.S. are supported by the Flinders Foundation. J.M.L. holds a Priority Impact Research Award—Future Leader funded by the Prostate Cancer Foundation of Australia. The funders had no role in considering the study design or in the collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Keywords: adverse events | breast cancer | cardiovascular drugs | concomitant medications | individual participant data meta-analysis | proton pump inhibitors | survival outcomes

ABSTRACT

Background: The impact of commonly used non-cancer medications on breast cancer outcomes remains underexplored in large datasets

Aims: To evaluate the associations between commonly used non-cancer medications and survival as well as adverse events in patients with breast cancer.

Materials & Methods: Individual participant data from 19 breast cancer clinical trials (n = 23,211) were pooled. Cox proportional hazards models and logistic regression analyses were used to assess associations between medication use and overall survival, progression-free survival and grade ≥ 3 adverse events. Analyses were adjusted for demographic, cancer and comorbidity factors.

Results: Proton pump inhibitor use was associated with poorer overall survival (HR 1.19, 95% CI: 1.08–1.30), progression-free survival (HR 1.11, 95% CI: 1.02–1.21) and an increased risk of grade ≥ 3 adverse events (OR 1.36, 95% CI: 1.21–1.53). Beta-blockers, ACE inhibitors/ARBs and calcium channel blockers were linked with higher adverse event rates but showed no significant impact on survival. Statins and metformin demonstrated no significant associations with either survival or adverse events.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.

Conclusion: These findings emphasise the need for careful management of concomitant medications in breast cancer care and support ongoing research to optimise treatment safety and efficacy.

1 | Introduction

A substantial proportion of patients with breast cancer are multimorbid, with most receiving at least one long-term medication unrelated to their cancer [1–4]. Given the high prevalence of co-existing conditions, such as cardiovascular disease, diabetes and gastro-oesophageal reflux disease (GORD), concomitant medicines commonly used by patients with breast cancer include antihypertensives, statins, metformin and proton pump inhibitors (PPIs) [2, 3, 5]. However, the association between the use of these non-cancer concomitant medicines and survival and adverse outcomes in patients with breast cancer has not been extensively evaluated in large, high-quality datasets.

Emerging evidence suggests that commonly used medicines such as beta-blockers (BBs), angiotensin-converting enzyme (ACE) inhibitors/angiotensin II receptor blockers (ARBs), calcium channel blockers (CCBs), metformin, statins and PPIs may impact the therapeutic outcomes of patients with breast cancer [6-13]. It is proposed that these medicines may influence cancer outcomes through various mechanisms, including altering the pharmacokinetics of anticancer drugs, causing adverse events, impacting the gut microbiota and affecting cancer biology by influencing cellular proliferation, apoptosis and angiogenesis [6-13]. However, most studies to date have been limited by insufficient data across treatments and breast cancer subtypes and/or an inability to account for potential confounding due to co-existing comorbidities. Evaluating the impact of the vast number of concomitant medications proposed to have effects on breast cancer outcomes through prospective randomised controlled trials would be impractical due to associated costs, ethical concerns and extended timeframes required to conduct such clinical investigations [14]. Meanwhile, comprehensive access to well-described clinical and demographic data from clinical trials presents an opportunity to conduct wellpowered detailed investigations.

In this study, we leveraged access to comprehensive and detailed data from clinical trials to perform a pooled individual participant data (IPD) meta-analysis investigating the associations between commonly used concomitant medicines and the survival and adverse outcomes of patients with breast cancer receiving contemporary anticancer therapies.

2 | Materials and Methods

2.1 | Patient Population

This publication is based on research using data from Lilly, Pfizer and Roche that has been made available through Vivli Inc. Vivli has not contributed to or approved and is not in any way responsible for the contents of this publication. Clinical trial IPD was accessed through Vivli to evaluate predictors (such as concomitant medicines) for their ability to identify the likelihood of adverse events and therapeutic outcomes in patients with breast cancer.

This study pools IPD from 19 breast cancer trials, including: CLEOPATRA [NCT00567190, data cut: Feb 2014] [15], EMILIA [NCT00829166, data cut: December 2014] [16], MARIANNE [NCT01120184, data cut: May 2016] [17], TH3RESA [NCT01419197, data cut: Aug 2015] [18], MONARCH1 [NCT02102490, data cut: October 2016] [19], MONARCH2 [NCT02107703, data cut: February 2017] [20], MONARCH3 [NCT02246621, data cut: November 2017] [21], NEXTMONARCH1 [NCT02747004, data cut: June 2020] [22], PALOMA1 [NCT00721409, data cut: November 2013 [23], PALOMA2 [NCT01740427, data cut: February 2016] [24], PALOMA3 [NCT01942135, data cut: October 2015] [25], PHEREXA [NCT01026142, data cut: September 2017] [26], RIBBON1 [NCT00262067, data cut: July 2008] [27], ROSE TRIO [NCT00703326, data cut: August 2016] [28], APHINITY [NCT01358877, data cut: December 2016] [29], BEATRICE [NCT00528567, data cut: June 2014] [30], HERA [NCT00045032, data cut: June 2015 [31], KATHERINE [NCT01772472, data cut: July 2018] [32] and NEOSPHERE [NCT00545688, data cut: October 2014] [33]. Trials were selected based on the availability of comprehensive IPD on survival, adverse events and concomitant medication use, representing a broad range of breast cancer subtypes and contemporary treatment approaches. Specific eligibility criteria and treatment protocols for each clinical trial are detailed in the cited references and can also be found in their respective entries on ClinicalTrials.gov.

The secondary analysis of anonymised IPD is exempt from review by the local ethics review board (Southern Adelaide Local Health Network Office for Research and Ethics), as it was classified as negligible-risk research.

2.2 | Outcomes, Concomitant Medicines and Adjustment Data

The primary outcomes were overall survival (OS) and grade ≥3 adverse events (AEs), while progression-free survival (PFS) and disease-free survival (DFS) were secondary outcomes. Definitions and criteria for these outcomes, including the versions of NCI CTCAE (National Cancer Institute Common Terminology Criteria for Adverse Events) and RECIST (Response Evaluation Criteria in Solid Tumours) used across the included trials, are summarised in Table S1. Classifications of disease stage (early vs. advanced), hormone receptor and human epidermal growth factor receptor 2 (HER2) status were based on trial-level definitions as reported in the original datasets. Treatment classifications refer to therapies administered exclusively within the respective trial arms, as per the trial protocols.

Based on prior literature and the pooled cohort's medication use patterns, this study evaluated the association between concomitant non-cancer medication exposure and outcomes, focusing on medications used by more than 500 participants in the pooled cohort at baseline. In this context, baseline concomitant medication exposure refers to any medication being used at the time of anticancer treatment initiation within the respective clinical

trials, regardless of the duration of its pretrial use. According to these criteria, the concomitant non-cancer medications evaluated in this study included BBs, ACE inhibitors/ARBs, CCBs, statins, metformin and PPIs.

Across all 19 pooled clinical trials, available pre-treatment characteristic data for model adjustments included concomitant medicine use status, age, body mass index (BMI), oestrogen receptor (ER) status, HER2 status, Eastern Cooperative Oncology Group performance status (ECOG PS), total comorbidity count and comorbidities for which the evaluated concomitant medicines were used.

2.3 | Statistical Analysis

Associations between concomitant medicine use and OS, DFS and PFS were evaluated using Cox-proportional hazard analysis. The association between concomitant medicine use and the occurrence of grade ≥ 3 AEs was evaluated using binary logistic regression. Analyses were performed on a per-protocol basis using complete cases with stratification by study and treatment arm. Associations were reported as hazard ratios (HR) or odds ratios (OR) with 95% confidence intervals (CI). All statistical tests were two-sided and a p value <0.05 was considered statistically significant. All analyses were adjusted for age, BMI, ER status, performance status, comorbidity count and common comorbidities for which the evaluated concomitant medicines were used. Comorbidities were classified based on definitions provided in the clinical trial datasets.

Forest plots were created to visualise assessed associations, with the R package 'forestploter' used for this purpose. Descriptive statistics were used to summarise baseline characteristics. Median follow-up periods are reported separately for the early-stage and advanced breast cancer cohorts to reflect the differences in disease trajectory and treatment durations between these groups. Subgroup analyses were conducted for clinically relevant variables, including disease stage (early vs. advanced), presence of liver metastases, breast cancer subtype (e.g., HER2-positive, HR+/HER2-, triple-negative) and the type of anticancer therapy.

Between-subgroup differences in survival and AE outcomes were assessed using the Chi-square (χ^2) test of independence. Degrees of freedom (df) were determined as the number of subgroups minus one. P values were derived from the Chi-square statistic to determine whether the observed differences between subgroups were statistically significant. All analyses were conducted using R version 4.1.1.

3 | Results

3.1 | Patient Population

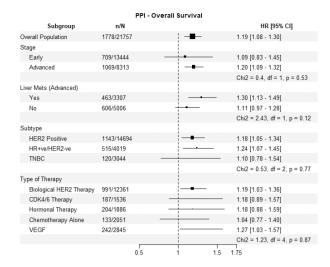
This study pooled IPD from 23,211 participants across 19 clinical trials. The median age of the patients was 52 years (Table S2). The cohort's baseline clinical characteristics are presented in Table S2.

The cohort included 13,837 patients (60%) with early-stage breast cancer and 9374 (40%) with advanced breast cancer. A total of 18,028 patients (78%) had an ECOG PS of 0, while 5096 (22%) had an ECOG PS of \geq 1. The cohort included 10,348 (45%) patients with a normal BMI, while 4926 (21%), 7214 (31%) and 544 (2%) were classified as obese, overweight, or underweight, respectively. Regarding cancer subtypes, 12,831 (55%) patients had ER-positive breast cancer, 15,357 (66%) had HER2-positive breast cancer, 4744 (20%) had hormone receptor-positive/HER2-negative breast cancer and 3065 (13%) had triple-negative breast cancer [TNBC]. The median (range) follow-up period was 54.9 months for those with early-stage breast cancer and 41.3 months for those with advanced disease.

In terms of treatment, 13,462 (58%) patients received anti-HER2 therapies, 2015 (9%) received CDK4/6 inhibitors, 2592 (11%) received hormonal therapy, 2088 (9%) received chemotherapy alone and 2127 (9%) received VEGF therapy.

A total of 6319 (27%) patients had a history of comorbidities typically managed with BBs, ACE inhibitors/ARBs, or CCBs—including 5628 (24%) patients who had a history of hypertension. Additionally, 2006 (9%) patients had conditions commonly treated with PPIs, including 1253 (5%) patients with a history of GORD or dyspepsia. A history of dyslipidaemia, often treated with statins, was reported in 2263 (10%) patients and 1354 (6%) patients had a history of diabetes commonly treated with metformin. The median number of comorbidities per patient was 2 [1–4].

At baseline, 1797 (8%) patients were using BBs, 2894 (12%) were on ACE inhibitors/ARBs, 1533 (7%) were taking statins, 1193 (5%) were on CCBs, 731 (3%) were using metformin and 1881 (8%) were on PPIs.

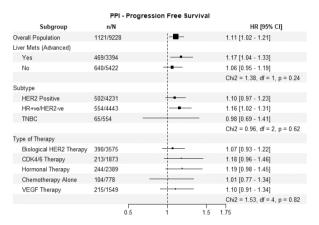
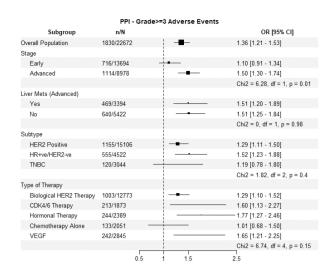

3.2 | Proton Pump Inhibitors

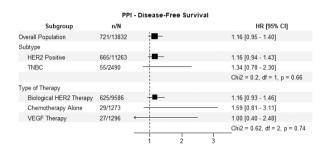
The associations between PPI use and OS, PFS, DFS and grade ≥3 AEs are demonstrated in Figure 1. In the overall cohort, PPI use was significantly associated with poorer OS (HR 1.19, 95% CI: 1.08-1.30) and PFS (HR 1.11, 95% CI: 1.02–1.21) and an increased occurrence of grade ≥3 AEs (OR 1.36, 95% CI: 1.21-1.53). No significant association between PPI use and DFS was identified. There was no significant difference in the observed PPI associations between subgroups based on stage, presence of liver metastases, treatment type, or breast cancer subtype for OS and PFS. Despite adjusting for age, BMI, ECOG PS, ER status, as well as the number of comorbidities and the common comorbidities for which PPIs are used, patients with advanced-stage disease had a significantly higher risk of grade ≥3 AEs with PPI use than patients with early-stage disease ($\chi^2 = 6.28$, df = 1, p = 0.01).

3.3 | Beta-Blockers

In the pooled cohort, BB use was significantly associated with a higher risk of developing grade ≥ 3 AEs (OR 1.21, 95% CI:

Cancer Medicine, 2025 3 of 10

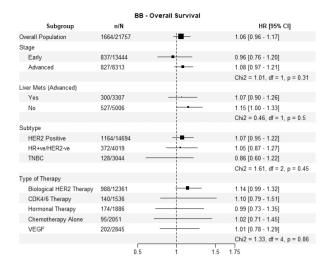




FIGURE 1 | PPI Forest Plot.

1.07–1.36) (Figure 2). No significant association between BB use and OS, PFS, or DFS was identified. For grade ≥ 3 AEs, there were no differences in the identified BB associations between subgroups based on disease stage or the presence of liver metastases. However, among BB users, the risk of grade ≥ 3 AEs was higher for patients with HR-positive/HER2-negative disease and TNBC compared to patients with HER2-positive disease ($\chi^2=9.05$, df=2, p=0.01). Additionally, the risk of grade ≥ 3 AEs was higher for patients receiving hormonal and VEGF therapies compared to those treated with anti-HER2 medicines, CDK4/6 inhibitors, or chemotherapy alone ($\chi^2=13.13$, df=4, p=0.01).

3.4 | ACE Inhibitors/ARBs

In the pooled cohort, ACE inhibitor/ARB use was significantly associated with a higher risk of developing grade ≥ 3 AEs (OR 1.13, 95% CI: 1.01–1.26), (Figure 3). However, there was no association between ACE inhibitor/ARB use and OS, PFS, or DFS. For grade ≥ 3 AEs outcomes, there were no differences in the identified ACE inhibitor/ARB associations based on the presence of liver metastases or cancer treatment. However, the risk of grade ≥ 3 AEs in ACE inhibitor/ARB was higher for patients


with early-stage disease compared to advanced-stage disease (χ^2 =5.94, df=1, p=0.01). The risk of grade \geq 3 AEs was also higher in patients with TNBC than in patients with HER2-positive and HR-positive/HER2-negative disease (χ^2 =6.77, df=2, p=0.03).

3.5 | Calcium Channel Blockers

In the pooled cohort, CCB use was significantly associated with a higher risk of developing grade ≥ 3 AEs (OR 1.31, 95% CI: 1.13–1.51) (Figure 4). No significant association between CCB use and OS, PFS, or DFS was identified. Additionally, no significant differences in the identified association between CCB use and the occurrence of grade ≥ 3 AEs were observed between subgroups based on disease stage or subtype, presence of liver metastases or cancer treatment.

3.6 | Statins and Metformin

In the pooled cohort, there were no associations between statin or metformin use with OS, PFS, DFS and grade ≥ 3 AEs (Figures S1 and S2).

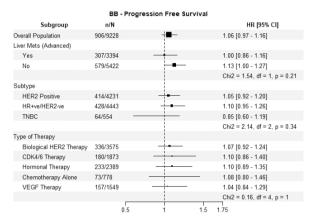
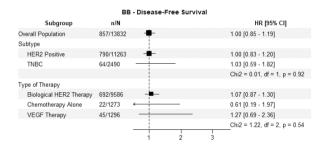
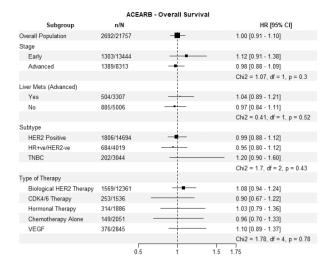



FIGURE 2 | Beta-blocker Forest Plot.

BB - Grade>=3 Adverse Events OR 195% CII Subgroup n/N 1.21 [1.07 - 1.36] 1743/22672 Overall Population Stage Early 849/13694 1.14 [0.95 - 1.38] 894/8978 1.26 [1.07 - 1.49] Advanced Chi2 = 0.64. df = 1. p = 0.42 Liver Mets (Advanced) Yes 307/3394 1.24 [0.94 - 1.64] 1.31 [1.06 - 1.60] No 579/5422 Chi2 = 0.08 df = 1 p = 0.78 Subtype HFR2 Positive 1184/15106 1 01 [0 86 - 1 18] HR+ve/HER2-ve 431/4522 1.42 [1.12 - 1.81] TNBC 128/3044 2.17 [1.39 - 3.39] Chi2 = 9.05, df = 2, p = 0.01 Type of Therapy Biological HER2 Therapy 1008/12773 0.97 [0.82 - 1.14] CDK4/6 Therapy 1.35 [0.93 - 1.96] 180/1873 Hormonal Therapy 233/2389 1 48 [1 05 - 2 08] Chemotherapy Alone 95/2051 1.42 [0.89 - 2.26] VEGE 202/2845 2.10 [1.48 - 2.99] Chi2 = 13 13 df = 4 n = 0 01

4 | Discussion


Defining the impact of concomitant medicines on breast cancer outcomes is essential for guiding treatment decisions and improving patient care, particularly as advancements in therapy are extending survivorship after diagnosis. This study provides the most comprehensive evaluation to date of the impact of commonly used concomitant medicines on breast cancer outcomes, drawing on data from over 23,000 patients across 19 clinical trials. Concomitant PPI use was significantly associated with poorer OS, PFS and an increased occurrence of grade ≥ 3 AEs. Furthermore, a higher risk of developing grade ≥ 3 AEs was observed in patients who used BBs, ACE inhibitors/ARBs and CCBs.

The association between PPIs and poorer outcomes in this study aligns with a growing body of evidence suggesting potential risks associated with their use in patients with cancer [34–38]. These findings are particularly concerning given the widespread overprescribing of PPIs in oncology care [39]. One plausible mechanism underlying the association between PPI use and worse outcomes in cancer patients relates to potential direct and comorbid disease-related disruptions of the gut microbiota–immune system axis [40]. The gut microbiome is increasingly recognised for its role in regulating systemic immune

responses, which are important for anti-tumour activity [41]. Additionally, PPIs may alter the pharmacokinetics of anticancer therapies, including CDK4/6 inhibitors, chemotherapy agents and immune checkpoint inhibitors [12, 42], potentially affecting their efficacy. Our findings emphasise the careful and judicious use of PPIs in patients with cancer, particularly those with breast cancer and highlight the necessity for ongoing research into their safety.

In our analysis, no significant associations were found between the use of BBs, ACE inhibitors/ARBs, or CCBs with survival outcomes in this large, diverse cohort. However, an increased risk of grade \geq 3 AEs was observed. Previous studies on the influence of these medicines on breast cancer outcomes have provided conflicting evidence. For instance, BBs have been reported to inhibit tumour proliferation and migration by blocking adrenergic signalling [43, 44], supporting findings from several small studies showing improved survival outcomes [7, 44]. However, other studies demonstrated either worse outcomes or no associations between BB use and breast cancer outcomes [6, 45]. Whilst ACE inhibitors and ARBs have been proposed to affect breast cancer through their impact on the renin-angiotensin system [46], meta-analyses across smaller studies are inconsistent [9]. CCBs have also been implicated in both promoting cancer progression through inhibition of apoptosis and possibly suppressing

Cancer Medicine, 2025 5 of 10

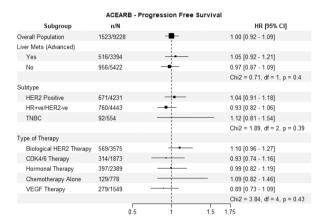
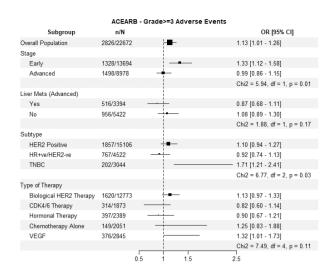
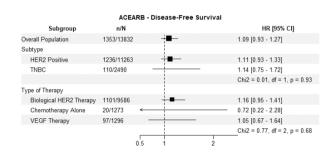
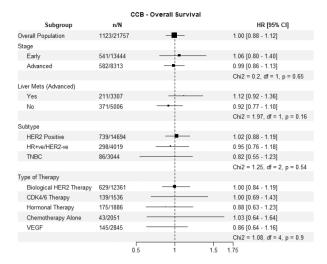




FIGURE 3 | ACEARB Forest Plot.

tumour progression via immunosuppressive effects [47, 48]. Our own findings using a much larger dataset are therefore important in providing reassurance that BBs, ACE inhibitors/ARBs and CCBs do not worsen survival outcomes in patients with breast cancer and support their use when necessary. However, the increased risk of adverse events, potentially linked to cardiovascular, renal, or frailty mechanisms, also highlights the need for careful monitoring of patients taking these drugs, particularly those with additional risk factors for treatment-related adverse events. No statistically significant interactions between PPI use and comorbidity count were identified for OS, PFS, DFS and grade \geq 3 AEs.


This study found no significant associations between statin or metformin use and therapeutic outcomes in breast cancer, providing reassurance about their safety. These findings contrast with previous studies that suggested potential benefits, particularly for metformin, which has been linked to improved cancer outcomes [49–52]. Similarly, statins, known for their cholesterol-lowering properties, have been hypothesised to offer anticancer benefits through mechanisms such as modulating cellular proliferation and inflammation [53–55]. The absence of significant effects in our pooled cohort may suggest that any potential anticancer beneficial effects from either statins or metformin are more modest than previously thought or could be

limited to specific subpopulations not adequately represented in this analysis.

Clinical trials, particularly RCTs, are the backbone of evidencebased medicine; however, their strict inclusion criteria can limit the generalisability of results to broader real-world practice [56]. Our study utilises data from 19 high-quality clinical trials involving over 23,000 patients, thereby capturing a wide array of breast cancer subtypes and treatments. While this increases the scope of our analysis, we acknowledge that the dataset remains subject to selection bias inherent in clinical trial populations. Nevertheless, the large sample size of our dataset enhances statistical power and enables the detection of small but clinically important effects. The well-described nature of our data, as is often only available in rigorously collected clinical trial data, also allowed us to adjust for multiple potential confounders, including age, BMI, oestrogen receptor status, performance status and comorbidity burden. Moreover, the higher-than-typical prevalence of HER2-positive breast cancer in our study population may limit the broader generalisability of our findings [57]. Additional limitations to the study include that as a posthoc observational study, we cannot establish definitive causal relationships between concomitant medicine use and therapeutic outcomes [58]. Residual confounding could also persist despite adjustment for known variables, particularly given the

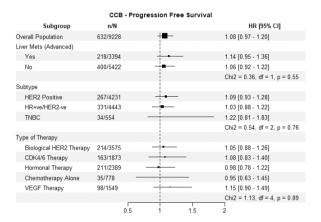
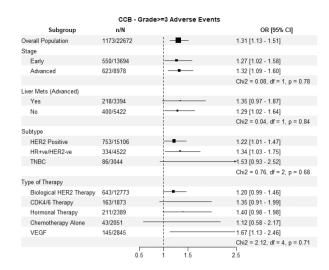
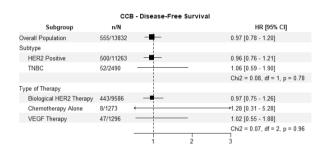




FIGURE 4 | CCB Forest plot.

complexity of comorbid conditions and how they interact with each other and variations in treatment regimens. Finally, the lack of detailed data on dosing, duration, polypharmacy and adherence to concomitant medicines limits our ability to fully assess their impact on outcomes.

Despite these limitations, our findings represent a significant step forward in understanding the interplay between commonly used concomitant medicines and breast cancer outcomes. To build on these findings, future studies should aim to confirm these associations through prospective studies and explore the underlying mechanisms, including the potential impact of PPIs on gut microbiome dysregulation or their role as proxies for steroid use (since PPIs are commonly prescribed to prevent steroid-induced gastrointestinal irritation) [59]. Comprehensive analyses of non-haematologic toxicities, including the differences in adverse events associated with medications like PPIs versus antihypertensives (e.g., expected cardiovascular-type AEs from antihypertensives), would provide clinicians with better guidance on monitoring and managing associated risks. Integrating key prognostic factors, such as tumour stage, number of positive lymph nodes and tumour grade, will strengthen future analyses. Furthermore, studies should aim to standardise the reporting of medication use in clinical trials to enable

detailed polypharmacy analyses. Our study also highlights the importance of ongoing comprehensive clinical trial data access. As cancer therapies advance rapidly, timely and frequent sharing of new trial data is important to sustain the relevance of analyses and effectively guide evidence-based patient care [60].

In conclusion, our study identifies a significant association between PPI use and poorer OS and PFS in patients with breast cancer, along with a higher risk of grade ≥ 3 adverse events, challenging their assumed safety in breast cancer care. Moreover, the increased risk of grade ≥ 3 adverse events associated with BBs, ACE/ARBs and CCBs warrants increased monitoring of patients using these drugs. Although our analysis does not establish direct mechanistic links, it raises important questions about routinely used concomitant medicines and the need for more personalised approaches to care that balance their potential risks and benefits.

Author Contributions

All authors contributed to the study design, data analysis, data interpretation and drafting of the manuscript. All authors have read and approved the final version of the manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Cancer Medicine, 2025 7 of 10

Acknowledgements

Open access publishing facilitated by Flinders University, as part of the Wiley - Flinders University agreement via the Council of Australian University Librarians.

Disclosure

During the preparation of this work, the authors used ChatGPT and Grammarly AI to assist in the formatting and editing of the manuscript to improve the language and readability. After using these tools, the authors reviewed and edited the content as needed and took full responsibility for the content of the publication.

Ethics Statement

Secondary analysis of anonymised IPD was exempted from review by the Southern Adelaide Local Health Network, Office for Research and Ethics, as it was classified as minimal risk research.

Conflicts of Interest

A.R. and M.J.S. Sorich are recipients of investigator-initiated funding for research outside the scope of the current study from AstraZeneca, Boehringer Ingelheim, Pfizer and Takeda. A.R. is a recipient of speaker fees from Boehringer Ingelheim and Genentech outside the scope of the current study. A.M.H. is a recipient of investigator-initiated funding for research outside the scope of the current study from Boehringer Ingelheim. N.M.K. reports receiving consulting fees from AstraZeneca, Janssen, Pfizer Inc., Bristol Myers Squibb, BeyondSpring Inc., G1 Therapeutics Inc., Sandoz, Seagen Inc. and Fresenius Kabi outside the submitted work. GH Lyman reported receiving consulting fees from AstraZeneca, Sandoz, G1 Therapeutics Inc., BeyondSpring Inc. and Fresenius Kabi outside the submitted work. The author team has no other support, financial relationship, or other relationship activities that could appear to have influenced the submitted work.

Data Availability Statement

This publication is based on research using data from Lilly, Pfizer and Roche that has been made available through Vivli Inc. Data can be searched via the data IDs provided in the methods, but a request must be logged in order to access the data. Vivli has not contributed to or approved and is not in any way responsible for the contents of this publication. The code for data processing and visualisation is written in R and available upon request (N.M.: natansh.modi@flinders.edu.au).

References

- 1. M. R. Mohamed, S. G. Mohile, K. M. Juba, et al., "Association of Polypharmacy and Potential Drug-Drug Interactions With Adverse Treatment Outcomes in Older Adults With Advanced Cancer," *Cancer* 129, no. 7 (2023): 1096–1104.
- 2. P. S. Aye, O. W. Scott, J. M. Elwood, et al., "Use of Non-Cancer Medications in New Zealand Women at the Diagnosis of Primary Invasive Breast Cancer: Prevalence, Associated Factors and Effects on Survival," *International Journal of Environmental Research and Public Health* 17, no. 21 (2020): 7962.
- 3. C. Bandidwattanawong, P. Rattanaserikulchai, and N. Jetsadavanit, "Polypharmacy and Potentially-Inappropriate Medications Are Prevalent in the Elderly Cancer Patients Receiving Systemic Cancer Therapy and They Co-Relate With Adverse Outcomes," *BMC Geriatrics* 23, no. 1 (2023): 775.
- 4. T. W. LeBlanc, M. J. McNeil, A. H. Kamal, D. C. Currow, and A. P. Abernethy, "Polypharmacy in Patients With Advanced Cancer and the Role of Medication Discontinuation," *Lancet Oncology* 16, no. 7 (2015): e333–e341.

- 5. B. K. Edwards, A. M. Noone, A. B. Mariotto, et al., "Annual Report to the Nation on the Status of Cancer, 1975–2010, Featuring Prevalence of Comorbidity and Impact on Survival Among Persons With Lung, Colorectal, Breast, or Prostate Cancer," *Cancer* 120, no. 9 (2014): 1290–1314.
- 6. N. D. Modi, J. Q. E. Tan, A. Rowland, et al., "The Influence of Pre-Existing Beta-Blockers Use on Survival Outcomes in HER2 Positive Advanced Breast Cancer: Pooled Analysis of Clinical Trial Data," *Frontiers* of Oncology 10 (2020): 1130.
- 7. G. Spera, R. Fresco, H. Fung, et al., "Beta Blockers and Improved Progression-Free Survival in Patients With Advanced HER2 Negative Breast Cancer: A Retrospective Analysis of the ROSE/TRIO-012 Study," *Annals of Oncology* 28, no. 8 (2017): 1836–1841.
- 8. L. L. Løfling, N. C. Støer, E. K. Sloan, et al., " β -Blockers and Breast Cancer Survival by Molecular Subtypes: A Population-Based Cohort Study and Meta-Analysis," *British Journal of Cancer* 127, no. 6 (2022): 1086–1096.
- 9. Y. Xie, M. Wang, P. Xu, et al., "Association Between Antihypertensive Medication Use and Breast Cancer: A Systematic Review and Meta-Analysis," *Frontiers in Pharmacology* 12 (2021): 609901.
- 10. S. R. Lord and A. L. Harris, "Is It Still Worth Pursuing the Repurposing of Metformin as a Cancer Therapeutic?," *British Journal of Cancer* 128, no. 6 (2023): 958–966.
- 11. W.-T. Chang, H. W. Lin, S. H. Lin, and Y. H. Li, "Association of Statin Use With Cancer- and Noncancer-Associated Survival Among Patients With Breast Cancer in Asia," *JAMA Network Open* 6, no. 4 (2023): e239515
- 12. K. Takahashi, R. Uozumi, T. Mukohara, et al., "Proton Pump Inhibitors and Cyclin-Dependent Kinase 4/6 Inhibitors in Patients With Breast Cancer," *Oncologist* 29, no. 6 (2024): e741–e749.
- 13. J. E. Lee, S. H. Kwon, S. Kwon, H. I. Jung, J. H. Nam, and E. K. Lee, "Concomitant Use of Proton Pump Inhibitors and Palbociclib Among Patients With Breast Cancer," *JAMA Network Open* 6, no. 7 (2023): e2324852.
- 14. N. D. Modi, A. Y. Abuhelwa, B. D. Menz, R. A. McKinnon, M. J. Sorich, and A. M. Hopkins, "Commentary: Association Between Antihypertensive Medication Use and Breast Cancer: A Systematic Review and Meta-Analysis," *Frontiers in Pharmacology* 12 (2021): 732622.
- 15. S. M. Swain, D. Miles, S. B. Kim, et al., "Pertuzumab, Trastuzumab, and Docetaxel for HER2-Positive Metastatic Breast Cancer (CLEO-PATRA): End-Of-Study Results From a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Study," *Lancet Oncology* 21, no. 4 (2020): 519–530.
- 16. V. Diéras, D. Miles, S. Verma, et al., "Trastuzumab Emtansine Versus Capecitabine Plus Lapatinib in Patients With Previously Treated HER2-Positive Advanced Breast Cancer (EMILIA): A Descriptive Analysis of Final Overall Survival Results From a Randomised, Open-Label, Phase 3 Trial," *Lancet Oncology* 18, no. 6 (2017): 732–742.
- 17. E. A. Perez, C. Barrios, W. Eiermann, et al., "Trastuzumab Emtansine With or Without Pertuzumab Versus Trastuzumab With Taxane for Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: Final Results From MARIANNE," *Cancer* 125, no. 22 (2019): 3974–3984.
- 18. I. E. Krop, S. B. Kim, A. G. Martin, et al., "Trastuzumab Emtansine Versus Treatment of Physician's Choice in Patients With Previously Treated HER2-Positive Metastatic Breast Cancer (TH3RESA): Final Overall Survival Results From a Randomised Open-Label Phase 3 Trial," *Lancet Oncology* 18, no. 6 (2017): 743–754.
- 19. M. N. Dickler, S. M. Tolaney, H. S. Rugo, et al., "MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients With Refractory HR(+)/HER2(-) Metastatic Breast Cancer," *Clinical Cancer Research* 23, no. 17 (2017): 5218–5224.

- 20. G. W. Sledge, M. Toi, P. Neven, et al., "The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor–Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy—MONARCH 2: A Randomized Clinical Trial," *JAMA Oncology* 6, no. 1 (2020): 116–124.
- 21. S. Johnston, M. Martin, A. Leo, et al., "MONARCH 3 Final PFS: A Randomized Study of Abemaciclib as Initial Therapy for Advanced Breast Cancer," *NPJ Breast Cancer* 5, no. 1 (2019): 5.
- 22. E. Hamilton, J. Cortes, O. Ozyilkan, et al., "nextMONARCH: Abemaciclib Monotherapy or Combined With Tamoxifen for Metastatic Breast Cancer," *Clinical Breast Cancer* 21, no. 3 (2021): 181–190.e2.
- 23. R. S. Finn, J. P. Crown, I. Lang, et al., "The Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib in Combination With Letrozole Versus Letrozole Alone as First-Line Treatment of Oestrogen Receptor-Positive, HER2-Negative, Advanced Breast Cancer (PALOMA-1/TRIO-18): A Randomised Phase 2 Study," *Lancet Oncology* 16, no. 1 (2015): 25–35.
- 24. R. S. Finn, M. Martin, H. S. Rugo, et al., "Palbociclib and Letrozole in Advanced Breast Cancer," *New England Journal of Medicine* 375, no. 20 (2016): 1925–1936.
- 25. N. C. Turner, D. J. Slamon, J. Ro, et al., "Overall Survival With Palbociclib and Fulvestrant in Advanced Breast Cancer," *New England Journal of Medicine* 379, no. 20 (2018): 1926–1936.
- 26. A. Urruticoechea, M. Rizwanullah, S. A. Im, et al., "Randomized Phase III Trial of Trastuzumab Plus Capecitabine With or Without Pertuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Who Experienced Disease Progression During or After Trastuzumab-Based Therapy," *Journal of Clinical Oncology* 35, no. 26 (2017): 3030–3038.
- 27. N. J. Robert, V. Diéras, J. Glaspy, et al., "RIBBON-1: Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Chemotherapy With or Without Bevacizumab for First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative, Locally Recurrent or Metastatic Breast Cancer," *Journal of Clinical Oncology* 29, no. 10 (2011): 1252–1260.
- 28. J. R. Mackey, N. McCarthy, K. A. Gelmon, et al., "Final Survival Analysis of ROSE/TRIO-012," *Journal of Clinical Oncology* 34, no. 30 (2016): 3714–3715.
- 29. G. von Minckwitz, M. Procter, E. de Azambuja, et al., "Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer," *New England Journal of Medicine* 377, no. 2 (2017): 122–131.
- 30. R. Bell, J. Brown, M. Parmar, et al., "Final Efficacy and Updated Safety Results of the Randomized Phase III BEATRICE Trial Evaluating Adjuvant Bevacizumab-Containing Therapy in Triple-Negative Early Breast Cancer," *Annals of Oncology* 28, no. 4 (2017): 754–760.
- 31. D. Cameron, M. J. Piccart-Gebhart, R. D. Gelber, et al., "11 Years' Follow-Up of Trastuzumab After Adjuvant Chemotherapy in HER2-Positive Early Breast Cancer: Final Analysis of the HERceptin Adjuvant (HERA) Trial," *Lancet* 389, no. 10075 (2017): 1195–1205.
- 32. G. von Minckwitz, C.-S. Huang, M. S. Mano, et al., "Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer," *New England Journal of Medicine* 380, no. 7 (2018): 617–628.
- 33. L. Gianni, T. Pienkowski, Y. H. Im, et al., "5-Year Analysis of Neo-adjuvant Pertuzumab and Trastuzumab in Patients With Locally Advanced, Inflammatory, or Early-Stage HER2-Positive Breast Cancer (NeoSphere): A Multicentre, Open-Label, Phase 2 Randomised Trial," *Lancet Oncology* 17, no. 6 (2016): 791–800.
- 34. A. M. Hopkins, S. Badaoui, G. Kichenadasse, et al., "Efficacy of Atezolizumab in Patients With Advanced NSCLC Receiving Concomitant Antibiotic or Proton Pump Inhibitor Treatment: Pooled Analysis of Five Randomized Control Trials," *Journal of Thoracic Oncology* 17, no. 6 (2022): 758–767.

- 35. A. M. Hopkins, G. Kichenadasse, C. S. Karapetis, A. Rowland, and M. J. Sorich, "Concomitant Proton Pump Inhibitor Use and Survival in Urothelial Carcinoma Treated With Atezolizumab," *Clinical Cancer Research* 26, no. 20 (2020): 5487–5493.
- 36. A. Cortellini, M. Tucci, V. Adamo, et al., "Integrated Analysis of Concomitant Medications and Oncological Outcomes From PD-1/PD-L1 Checkpoint Inhibitors in Clinical Practice," *Journal for Immunotherapy of Cancer* 8, no. 2 (2020): e001361.
- 37. S. A. Tvingsholm, C. Dehlendorff, K. Østerlind, S. Friis, and M. Jäättelä, "Proton Pump Inhibitor Use and Cancer Mortality," *International Journal of Cancer* 143, no. 6 (2018): 1315–1326.
- 38. G. Kichenadasse, J. O. Miners, A. A. Mangoni, C. S. Karapetis, A. M. Hopkins, and M. J. Sorich, "Proton Pump Inhibitors and Survival in Patients With Colorectal Cancer Receiving Fluoropyrimidine-Based Chemotherapy," *Journal of the National Comprehensive Cancer Network* 19, no. 9 (2021): 1037–1044.
- 39. J.-L. Raoul, C. Guérin-Charbonnel, J. Edeline, V. Simmet, M. Gilabert, and J. S. Frenel, "Prevalence of Proton Pump Inhibitor Use Among Patients With Cancer," *JAMA Network Open* 4, no. 6 (2021): e2113739.
- 40. R. K. Weersma, A. Zhernakova, and J. Fu, "Interaction Between Drugs and the Gut Microbiome," *Gut* 69, no. 8 (2020): 1510–1519.
- 41. N. Iida, A. Dzutsev, A. Stewart, et al., "Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment," *Frontiers of Oncology* 342, no. 6161 (2013): 967–970.
- 42. M. Chalabi, A. Cardona, D. R. Nagarkar, et al., "Efficacy of Chemotherapy and Atezolizumab in Patients With Non-Small-Cell Lung Cancer Receiving Antibiotics and Proton Pump Inhibitors: Pooled Post Hoc Analyses of the OAK and POPLAR Trials," *Annals of Oncology* 31, no. 4 (2020): 525–531.
- 43. E. K. Sloan, S. J. Priceman, B. F. Cox, et al., "The Sympathetic Nervous System Induces a Metastatic Switch in Primary Breast Cancer," *Cancer Research* 70, no. 18 (2010): 7042–7052.
- 44. J. G. Hiller, S. W. Cole, E. M. Crone, et al., "Preoperative β -Blockade With Propranolol Reduces Biomarkers of Metastasis in Breast Cancer: A Phase II Randomized Trial," *Clinical Cancer Research* 26, no. 8 (2020): 1803–1811.
- 45. R. Caparica, M. Bruzzone, E. Agostinetto, et al., "Beta-Blockers in Early-Stage Breast Cancer: A Systematic Review and Meta-Analysis," *ESMO Open* 6, no. 2 (2021): 100066.
- 46. M. Pinter and R. K. Jain, "Targeting the Renin-Angiotensin System to Improve Cancer Treatment: Implications for Immunotherapy," *Science Translational Medicine* 9, no. 410 (2017).
- 47. M. Pahor, J. M. Guralnik, L. Ferrucci, et al., "Calcium-Channel Blockade and Incidence of Cancer in Aged Populations," *Lancet* 348, no. 9026 (1996): 493–497.
- 48. J. R. Daling, "Calcium Channel Blockers and Cancer: Is an Association Biologically Plausible?," *American Journal of Hypertension* 9, no. 7 (1996): 713–714.
- 49. A. De and G. Kuppusamy, "Metformin in Breast Cancer: Preclinical and Clinical Evidence," *Current Problems in Cancer* 44, no. 1 (2020): 100488.
- 50. F. Biello, F. Platini, F. D'Avanzo, et al., "Insulin/IGF Axis in Breast Cancer: Clinical Evidence and Translational Insights," *Biomolecules* 11, no. 1 (2021): 125.
- 51. P. J. Goodwin, B. E. Chen, K. A. Gelmon, et al., "Effect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast Cancer: The MA.32 Randomized Clinical Trial," *JAMA* 327, no. 20 (2022): 1963–1973.
- 52. R. J. O. Dowling, S. Niraula, V. Stambolic, and P. J. Goodwin, "Metformin in Cancer: Translational Challenges," *Journal of Molecular Endocrinology* 48, no. 3 (2012): R31–R43.

Cancer Medicine, 2025 9 of 10

- 53. M. Weis, C. Heeschen, A. J. Glassford, and J. P. Cooke, "Statins Have Biphasic Effects on Angiogenesis," *Circulation* 105, no. 6 (2002): 739–745.
- 54. H. Franz Alber, J. Dulak, M. Frick, et al., "Atorvastatin Decreases Vascular Endothelial Growth Factor in Patients With Coronary Artery Disease," *Journal of the American College of Cardiology* 39, no. 12 (2002): 1951–1955.
- 55. G. Wang, R. Cao, Y. Wang, et al., "Simvastatin Induces Cell Cycle Arrest and Inhibits Proliferation of Bladder Cancer Cells via PPARγ Signalling Pathway," *Scientific Reports* 6, no. 1 (2016): 35783.
- 56. K. I. Paraskevas, G. J. de Borst, and F. J. Veith, "Why Randomized Controlled Trials Do Not Always Reflect Reality," *Journal of Vascular Surgery* 70, no. 2 (2019): 607–614.e3.
- 57. X. Baez-Navarro, M. R. van Bockstal, E. R. Andrinopoulou, and C. H. M. van Deurzen, "HER2-Low Breast Cancer: Incidence, Clinicopathologic Features, and Survival Outcomes From Real-World Data of a Large Nationwide Cohort," *Modern Pathology* 36, no. 4 (2023): 100087.
- 58. G. Hammerton and M. R. Munafò, "Causal Inference With Observational Data: The Need for Triangulation of Evidence," *Psychological Medicine* 51, no. 4 (2021): 563–578.
- 59. L. G. T. Shanika, A. Reynolds, S. Pattison, and R. Braund, "Proton Pump Inhibitor Use: Systematic Review of Global Trends and Practices," *European Journal of Clinical Pharmacology* 79, no. 9 (2023): 1159–1172.
- 60. N. D. Modi, S. M. Swain, M. Buyse, et al., "Clinical Study Report and Individual Participant Data Transparency for US Food and Drug Administration–Approved Anticancer Drugs: A Call for Systematic Data Availability," *Journal of Clinical Oncology* 42 (2024): JCO.24.00539.

Supporting Information

Additional supporting information can be found online in the Supporting Information section. **Table S1:** Outcome definitions and criteria across included studies. **Table S2:** Demographics. **Figure S1:** Statin forest plot. **Figure S2:** Metformin forest plot.